



# NANO SCIENTIFIC RESEARCH CENTRE

(An ISO: 9001:2008 Certified Company)

#604, Opp. Lane to R.S. Brothers, Siri Estates, Ameerpet, Hyderabad, Telangana 500073.

E-mail: [info@nanocdac.com](mailto:info@nanocdac.com), [www.nanocdac.com](http://www.nanocdac.com), +91-8297578555, +91-9640648777

## VLSI: B.Tech IEEE Project List

| CODE          | TITLES                                                                                                                        |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|
| <b>NVD-01</b> | Dual-Quality 4:2 Compressors for Utilizing in Dynamic Accuracy Configurable Multipliers                                       |
| <b>NVD-02</b> | Design of Power and Area Efficient Approximate Multipliers                                                                    |
| <b>NVD-03</b> | Low power Viterbi decoder design based on reversible logic gates                                                              |
| <b>NVD-04</b> | Modified carry select adder for power and area reduction                                                                      |
| <b>NVD-05</b> | Low Power Array Multiplier Using Modified Full Adder                                                                          |
| <b>NVD-06</b> | Design of Efficient BCD Adders in Quantum-Dot Cellular Automata                                                               |
| <b>NVD-07</b> | Reconfigurable delay optimized carry select adder                                                                             |
| <b>NVD-08</b> | Low Power Array Multiplier Using Modified Full Adder                                                                          |
| <b>NVD-09</b> | A Modified Partial Product Generator for Redundant Binary Multipliers                                                         |
| <b>NVD-10</b> | Reconfigurable Constant Multiplication for FPGAs                                                                              |
| <b>NVD-11</b> | On the VLSI Energy Complexity of LDPC Decoder Circuits                                                                        |
| <b>NVD-12</b> | VLSI Design for Convolutive Blind Source Separation                                                                           |
| <b>NVD-13</b> | 10T SRAM Using Half-VDD Precharge and Row-Wise Dynamically Powered Read Port for Low Switching Power and Ultralow RBL Leakage |
| <b>NVD-14</b> | A Cellular Network Architecture With Polynomial Weight Functions                                                              |
| <b>NVD-15</b> | IMPLEMENTATION OF REDUNDANT BINARY HIGH SPEED MULTIPLIERS WITHEFFICIENT PARTIAL PRODUCT GENERATOR                             |
| <b>NVD-16</b> | A Normal I/O Order Radix-2 FFT Architecture to Process TWIN DATA STREAMS FOR MIMO                                             |
| <b>NVD-17</b> | Iterative Architecture AES for Secure VLSI basedSystem Design                                                                 |
| <b>NVD-18</b> | VLSI Implementation of 3D Integer DCT for Video Coding Standards                                                              |
| <b>NVD-19</b> | Optimized implementation of FFT processor for OFDM systems                                                                    |
| <b>NVD-20</b> | Power delay product optimized hybrid full added circuits                                                                      |



# NANO SCIENTIFIC RESEARCH CENTRE

(An ISO: 9001:2008 Certified Company)

#604, Opp. Lane to R.S. Brothers, Siri Estates, Ameerpet, Hyderabad, Telangana 500073.

E-mail: [info@nanocdac.com](mailto:info@nanocdac.com), [www.nanocdac.com](http://www.nanocdac.com), +91-8297578555, +91-9640648777

|               |                                                                                                                                                                       |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>NVD-21</b> | RoBA Multiplier: A Rounding-Based Approximate Multiplier for High-Speed yet Energy-Efficient Digital Signal Processing                                                |
| <b>NVD-22</b> | Multifunction Residue Architectures for Cryptography                                                                                                                  |
| <b>NVD-23</b> | Fault Tolerant Parallel FFTs Using Error Correction Codes and Parseval Checks                                                                                         |
| <b>NVD-24</b> | Low-Complexity Tree Architecture for Finding the First Two Minima                                                                                                     |
| <b>NVD-25</b> | LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER                                                                                                                |
| <b>NVD-26</b> | Aging-Aware Reliable Multiplier Design With Adaptive Hold Logic                                                                                                       |
| <b>NVD-27</b> | Reconfigurable Constant Multiplication for FPGAs                                                                                                                      |
| <b>NVD-28</b> | Low-Power and Area-Efficient Shift Register Using Pulsed Latches                                                                                                      |
| <b>NVD-29</b> | Analysis of vedic multiplier using various adder topologies.                                                                                                          |
| <b>NVD-30</b> | An Efficient Constant Multiplier Architecture Based on Vertical-Horizontal Binary Common Sub-expression Elimination Algorithm for Reconfigurable FIR Filter Synthesis |
| <b>NVD-31</b> | Fault Tolerant Parallel FFTs Using Error Correction Codes and Parseval Checks                                                                                         |
| <b>NVD-32</b> | Scan Test Bandwidth Management for Ultralarge-Scale System-on-Chip Architectures                                                                                      |

## **VLSI: B.Tech/M.E IEEE Project List**

|        |                                                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
| NV1601 | Floating-Point Butterfly Architecture Based on Binary Signed-Digit Representation                                              |
| NV1602 | Flexible DSP Accelerator Architecture Exploiting Carry-Save Arithmetic                                                         |
| NV1603 | Utilizing Shared Memory Multi-cores to Speed-up the ATPG process                                                               |
| NV1604 | Fault Tolerant Parallel Filters Based on Error Correction Codes                                                                |
| NV1605 | Error Correction Technique Based on Modular Correcting Codes                                                                   |
| NV1606 | FPGA Based Rate Compatible LDPC Codes for The Next Generation of Optical Transmission Systems                                  |
| NV1607 | A Modified Partial Product Generator for Redundant Binary Multipliers                                                          |
| NV1608 | A High-Throughput Energy-Efficient Implementation of Successive Cancellation Decoder for Polar Codes Using Combinational Logic |
| NV1609 | On Optimization-based ATPG and its Application for Highly Compacted Test Sets                                                  |
| NV1610 | High-Performance Pipelined Architecture of Elliptic Curve Scalar Multiplication Over $GF(2^m)^m$                               |
| NV1611 | Fault Tolerant Parallel FFTs Using Error Correction Codes and Parseval Checks                                                  |
| NV1612 | A High-Throughput Energy-Efficient Implementation of Successive Cancellation Decoder for Polar Codes Using Combinational Logic |
| NV1613 | Low-Power Parallel Chien Search Architecture Using a Two-Step Approach                                                         |



# NANO SCIENTIFIC RESEARCH CENTRE

(An ISO: 9001:2008 Certified Company)

#604, Opp. Lane to R.S. Brothers, Siri Estates, Ameerpet, Hyderabad, Telangana 500073.

E-mail: [info@nanocdac.com](mailto:info@nanocdac.com), [www.nanocdac.com](http://www.nanocdac.com), +91-8297578555, +91-9640648777

|        |                                                                                      |
|--------|--------------------------------------------------------------------------------------|
| NV1614 | Memory-Reduced Turbo Decoding Architecture Using NII Metric Compression Logic        |
| NV1615 | A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO    |
| NV1616 | A High-Performance FIR Filter Architecture for Fixed and Reconfigurable Applications |

| CODE   | B,TECH VLSI IEEE PROJECTS                                                                                           |
|--------|---------------------------------------------------------------------------------------------------------------------|
| NV1501 | ADynamicallyReconfigurableMulti-ASIPArchitectureforMultistandard and Multimode Turbo Decoding                       |
| NV1502 | Low-Cost High-PerformanceVLSIArchitectureforMontgomeryModular Multiplication                                        |
| NV1503 | Functional Constraint Extraction From RegisterTransferLevel for ATPG                                                |
| NV1504 | Fault Tolerant Parallel Filters Based on Error Correction Codes                                                     |
| NV1505 | DScanPUF: A Delay-Based Physical Unclonable Function Built Into Scan Chain                                          |
| NV1506 | Pre-Encoded Multipliers Based on Non-Redundant Radix-4 Signed-Digit Encoding                                        |
| NV1507 | Quantumcostrealizationofnewreversiblegateswithtransformationbased synthesis technique                               |
| NV1508 | On the Analysis of Reversible Booth's Multiplier                                                                    |
| NV1509 | Optimized Logarithmic Barrel Shifter in Reversible Logic Synthesis                                                  |
| NV1510 | A novel delay& Quantum Cost efficientreversiblerealizationof $2^{i+j}$ Random Access Memory                         |
| NV1511 | Exploiting Same Tag Bits to Improve the Reliability of the Cache Memories                                           |
| NV1512 | Hardware Efficient MixedRadix-25/16/9FFT for LTE Systems                                                            |
| NV1513 | Energy-Efficient Approximate Multiplication for Digital Signal Processing and Classification Applications           |
| NV1514 | A Combined SDC-SDF Architecture for Normal I/O Pipelined Radix-2 FFT                                                |
| NV1515 | An Accuracy-Adjustment Fixed-Width Booth Multiplier Based on Multilevel Conditional Probability                     |
| NV1516 | Design and ASIC Implementation of Column Compression Wallace/Dadda Multiplier in Sub-Threshold Regime               |
| NV1517 | Novel Design Algorithm for Low Complexity Programmable FIR Filters Based on Extended Double Base Number System      |
| NV1518 | An Efficient VLSI Architecture of a Reconfigurable Pulse-Shaping FIR Interpolation Filter for Multistandard DUC     |
| NV1519 | $(4 + 2 \log n)\Delta G$ Parallel Prefix Modulo- $(2n - 3)$ Adder via Double Representation of Residues in $[0, 2]$ |
| NV1520 | Low-Complexity Tree Architecture for Finding the First Two Minima                                                   |
| NV1521 | A Generalized Algorithm and Reconfigurable Architecture for Efficient and Scalable Orthogonal Approximation of DCT  |
| NV1522 | High-Throughput Finite Field Multipliers Using Redundant Basis for FPGA and ASIC Implementations                    |
| NV1523 | Test Data Compression using Hamming Encoder and Decoder for System On Chip (SOC) Testing                            |
| NV1524 | Self-Repairing Digital System With Unified Recovery Process Inspired by Endocrine Cellular Communication            |
| NV1525 | Fully Reused VLSI Architecture of FM0/Manchester Encoding Using SOLS Technique for DSRC Applications                |
| NV1526 | Partially Parallel Encoder Architecture for Long Polar Codes                                                        |
| NV1527 | Z-TCAM: An SRAM-based Architecture for TCAM                                                                         |
| NV1528 | Digital Post-Correction of Analog-to-Digital Converters with Real-Time FPGA Implementation                          |
| NV1429 | Low-Complexity Low-Latency Architecture for Matching of Data Encoded With Hard Systematic Error-Correcting Codes    |



# NANO SCIENTIFIC RESEARCH CENTRE

(An ISO: 9001:2008 Certified Company)

#604, Opp. Lane to R.S. Brothers, Siri Estates, Ameerpet, Hyderabad, Telangana 500073.

E-mail: [info@nanocdac.com](mailto:info@nanocdac.com), [www.nanocdac.com](http://www.nanocdac.com), +91-8297578555, +91-9640648777

|        |                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------|
| NV1430 | Energy-Efficient High-Throughput Montgomery Modular Multipliers for RSA Cryptosystems                           |
| NV1431 | A Class of SEC-DED-DAE C Codes Derived From Orthogonal Latin Square Codes                                       |
| NV1432 | Efficient FPGA and ASIC Realizations of a DA-Based Reconfigurable FIR Digital filter                            |
| NV1433 | Low-Power Digital Signal Processor architecture For WirelessSensorNodes                                         |
| NV1334 | Error Detection in Majority Logic Decoding of Euclidean GeometryLow Density Parity Check(EG-LDPC)Codes          |
| NV1335 | Low-Power, High-Throughput, and Low-Area Adaptive FIR Filter Based On Distributed Arithmetic                    |
| NV1336 | Radix-4andradix-8booth encoded multi-modulus multipliers                                                        |
| NV1337 | Design and Implementation of an On-Chip Permutation Network for Multiprocessor System-On-Chip                   |
| NV1338 | Multi operand Redundant Adders on FPGA's                                                                        |
| NV1339 | Globalbuilt-inself-repairfor3Dmemorieswithredundancysharing and Parallel testing                                |
| NV1340 | A Practical NoC Design for Parallel DES Computation                                                             |
| NV1341 | Parallel AES Encryption Engines for Many-Core Processor Arrays                                                  |
| NV1342 | VLSI Implementation of a HighSpeedSinglePrecisionFloatingPointUnit Using Verilog                                |
| NV1343 | A VLIW Architecture for Executing Multi-Scalar/Vector Instructions on Unified Data path                         |
| NV1344 | A Novel Modulo Adder for 2n-2k-1Residue Number System                                                           |
| NV1345 | Low-cost FIR filter designs based on faithfully rounded truncated Multiple constant multiplication/accumulation |
| NV1346 | Low-Power, High-Throughput, and Low-Area Adaptive FIR Filter Based On Distributed Arithmetic                    |
| NV1347 | Design and Implementation of 32 Bit Unsigned Multiplier Using CLAA and CSLA                                     |
| NV1348 | Enhanced Area Efficient Architecture for 128 bit Modified CSLA                                                  |
| NV1349 | High Performance Hardware Implementation of AES Using Minimal Resources                                         |
| NV1350 | Implementation of I2C Master Bus Controller on FPGA                                                             |
| NV1351 | Novel High Speed Vedic Mathematics Multiplier using Compressors                                                 |
| NV1352 | VLSI Implementation of a HighSpeedSinglePrecisionFloatingPointUnit Using Verilog                                |
| NV1353 | VLSI implementation of Fast Addition using Quaternary Signed Digit Number System                                |
| NV1354 | Design of High Performance 64bit MAC Unit                                                                       |
| NV1355 | FPGA Architecture for OFDM Software Defined Radio with an Optimized Direct Digital Frequency Synthesizer        |
| NV1356 | Implementation of UART with BIST Technique in FPGA                                                              |
| NV1357 | A High Speed Binary Floating Point Multiplier Using Dadda Algorithm                                             |
| NV1258 | Soft-Error-Resilient FPGAs Using Built-In 2-D Hamming Product Code                                              |
| NV1259 | High-Speed Low-Power Viterbi Decoder Design for TCM Decoders                                                    |
| NV1260 | Product Code Schemes for Error Correction in MLC NAND Flash Memories                                            |
| NV1261 | Low-Power and Area-Efficient Carry Select Adder                                                                 |
| NV1262 | Low-Cost Binary128 Floating-Point FMA Unit Design with SIMD Support                                             |
| NV1263 | Design and Implementation of 64-Bit Execute Stage for VLIW Processor Architecture on FPGA                       |
| NV1264 | Design and FPGA-based Implementation of a High Performance32-bit DSP Processor                                  |



# NANO SCIENTIFIC RESEARCH CENTRE

(An ISO: 9001:2008 Certified Company)

#604, Opp. Lane to R.S. Brothers, Siri Estates, Ameerpet, Hyderabad, Telangana 500073.  
E-mail: [info@nanocdac.com](mailto:info@nanocdac.com), [www.nanocdac.com](http://www.nanocdac.com), +91-8297578555, +91-9640648777

## **VLSI BACKEND: LOW POWER VLSI PROJECTS**

### **VLSI: B.Tech/M.E IEEE Project List**

| CODE   | B.Tech VLSI IEEE PROJECTS                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| NL1601 | Optimized Active Single-Miller Capacitor Compensation With Inner Half-Feed forward Stage for Very High-Load Three-Stage OTAs |
| NL1602 | Compensation Method for Multi Stage Opamps with High Capacitive Load Using Negative Capacitance                              |
| NL1603 | Variable-Mirror Amplifier: A New Family of Process-Independent Class-AB Single-Stage OTAs for Low-Power SC Circuits          |
| NL1604 | A Low Noise Output Capacitor-less Low Dropout Regulator with a Switched-RC Band gap Reference                                |
| NL1605 | Integer-N Phase Locked Loop for Bluetooth Receiver in CMOS 130 nm Technology                                                 |
| NL1606 | Ultra-low-power one-pin crystal oscillator with self-charged technique                                                       |
| NL1607 | High-Performance Low-Cost Dual 15 GHz/30 GHz CMOS LC Voltage-Controlled Oscillator                                           |
| NL1608 | A Power-Efficient Reconfigurable Output-Capacitor-Less Low-Drop-Out Regulator for Low-Power Analog Sensing Front-End         |
| NL1609 | Analysis of 8 Bit RCA Adder at Different Nanometer Regime                                                                    |
| NL1610 | A Novel Power Efficient N-MOS Based 1-Bit Full Adder                                                                         |
| NL1611 | Methods of Slew Rate Verification of Operational Amplifier Macro Model                                                       |
| NL1612 | A Novel Power Efficient Pulse Triggered Flip Flop with Minimum Transistors                                                   |
| NL1613 | Design of Low-Power High-Gain Operational Amplifier for Bio-Medical Applications                                             |
| NL1614 | Low-Complexity Multiterinary Digit Multiplier Design in CNTFET Technology                                                    |
| NV1615 | A Modified SRAM Based Low Power Memory Design                                                                                |
| NV1616 | Low Power High Speed D Flip Flop Design using Improved SVL Technique                                                         |

### **VLSI: B.Tech/M.E IEEE Project List**

| CODE   | B.Tech VLSI IEEE PROJECTS                                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------------------------|
| NL1501 | Low-Power Clock Distribution Using a Current-Pulsed Clocked Flip-Flop                                                      |
| NL1502 | Design Methodology of Sub threshold Three-Stage CMOSOT As Suitable for Ultralow-Power Low-Area and High Driving Capability |
| NL1503 | Low-Power and Area-Efficient Shift Register Using Pulsed Latches                                                           |
| NL1504 | A Fully-Integrated Low-Dropout Regulator With Full-Spectrum Power Supply Rejection                                         |
| NL1505 | 40-Gbs0.7-V21MUXand12DEMUXwithTransformer-Coupled Technique for SerDes Interface                                           |
| NL1506 | Low Power Conditional Pulse Control with Transmission Gate Flip-Flop                                                       |
| NL1507 | An Efficient Design Technique for Low Power Dynamic Feed through Logic With Enhanced Performance for wide fan-in gates     |
| NL1508 | Performance Analysis of CNTFET Based Digital Logic Circuits                                                                |
| NL1509 | A 90nm Low Power OTA Using Adaptive Bias                                                                                   |
| NL1510 | Implementing Low-Power Dynamic Adders in MTCMOS Technology                                                                 |



# NANO SCIENTIFIC RESEARCH CENTRE

(An ISO: 9001:2008 Certified Company)

#604, Opp. Lane to R.S. Brothers, Siri Estates, Ameerpet, Hyderabad, Telangana 500073.

E-mail: [info@nanocdac.com](mailto:info@nanocdac.com), [www.nanocdac.com](http://www.nanocdac.com), +91-8297578555, +91-9640648777

|        |                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| NL1511 | Design of high speed ternary full adder and three input XOR circuits using CNTFETs                                                                |
| NL1512 | An 8GHz First-Order Frequency Synthesizer for Low-Power On-Chip Clock Generation                                                                  |
| NL1513 | Free class AB-AB Miller opamp with high current enhancement                                                                                       |
| NL1514 | Ultralow-Energy Variation-Aware Design: Adder Architecture Study                                                                                  |
| NL1515 | Designing Tunable Sub threshold Logic Circuits Using Adaptive Feedback equalization                                                               |
| NL1516 | Design of a Low Power 4x4 Multiplier Based on Five Transistor (5-T) Half Adder, Eight Transistor (8-T) Full Adder & Two Transistor (2-T) AND Gate |
| NL1517 | Dynamic Threshold Source Coupled Logic with Push pull topology for Ultra Low Power Applications                                                   |
| NL1518 | Low Voltage Full Swing VCO With Symmetrical Even Phase Outputs Based On Single Ended Delay Cells                                                  |
| NL1519 | Recursive Approach to the Design of a Parallel Self-Timed Adder                                                                                   |
| NL1420 | Comparative Performance Analysis of XORXNOR Function Based High-Speed CMOS Full Adder Circuits                                                    |
| NL1421 | Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator                                                                             |
| NL1422 | A Fault-Tolerant Technique using Quadded Logic and Quadded Transistors                                                                            |

**NOTE: PLEASE CONTACT US IF ANY ONE IS INTERESTED TO SELECT CADENCE PROJECTS**